Yang-Baxterization of algebraic solutions of reflection equation for $\mathrm{su}(1,1)_{\mathrm{q}}$ model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 272935
(http://iopscience.iop.org/0305-4470/27/8/029)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 23:30

Please note that terms and conditions apply.

ADDENDUM

Yang-Baxterization of algebraic solutions of reflection equation for $s u(1,1)_{q}$ model

Hong-Chen Fu \dagger and Xiao-Ting Zhang \ddagger
\dagger Department of Physics, Northeast Normal University, Changchun 130024, People's Republic of China
\ddagger Department of Physics, Changchun Normal Coliege, Changchun 130032, People's Republic of China

Received 25 October 1993

Abstract

A quadratic relation between the central elements of reflection algebra for $s u(1, i)_{q}$ model is obtained. Yang-Baxterization of algebraic solutions to reflection equation for $s u(1,1)_{q}$ model is presented in terms of this relation.

In a previous paper [1], we studied the Yang-Baxterization of the reflection equation (RE)

$$
\begin{equation*}
R K_{1} \tilde{R} K_{2}=K_{2} R K_{1} \tilde{R} \tag{1}
\end{equation*}
$$

where $K_{1}=K \otimes I, K_{2}=I \otimes K, \tilde{R}=P R P$, and P is the permutation operator $P(x \otimes y)=y \otimes x$; namely, we presented a procedure to incorporate the parameters to R and K such that they satisfy the following parameter-dependent RE

$$
\begin{equation*}
R\left(\lambda \mu^{-1}\right) K_{1}(\lambda) \tilde{R}(\lambda \mu) K_{2}(\mu)=K_{2}(\mu) R(\lambda \mu) K_{1}(\lambda) \tilde{R}\left(\lambda \mu^{-1}\right) \tag{2}
\end{equation*}
$$

for $\breve{R}=P R$ with two distinct eigenvalues. This is of significance in the factorized scattering on a half-line [2], in the quantum current algebras [3] and in the integrable models with nonperiodic boundary conditions [4,5]. In particular, we presented the Yang-Baxterization of constant solutions of RE for the $s u(1,1)_{q}$ model. However, we failed in Yang-Baxterizing its algebraic solutions because the quantum determinant is not the central element. In this addendum, we are devoted to the Yang-Baxterization of its algebraic solution.

For convenience, we rewrite RE (1) and (2) as

$$
\begin{align*}
& \breve{R} K_{\mathrm{t}} \check{R} K_{1}=K_{1} \breve{R} K_{1} \breve{R} \tag{3}\\
& \breve{R}\left(\lambda \mu^{-1}\right) K_{1}(\lambda) \check{R}(\lambda \mu) K_{1}(\mu)=K_{1}(\mu) \breve{R}(\lambda \mu) K_{1}(\lambda) \check{R}\left(\lambda \mu^{-1}\right) \tag{4}
\end{align*}
$$

in terms of $\breve{R}=P R$. Here $P K_{2} P=K_{1}$ is used.
In fact, in [1] we prove that if (i) \breve{R} has two distinct eigenvalues t_{1} and t_{2} which, therefore, can be Yang-Baxterized as [6]

$$
\breve{R}(\lambda)=\left(\lambda-\lambda^{-1}\right) \check{R}-\left(t_{1}+t_{2}\right) \lambda I
$$

and (ii) the reflection matrix K satisfies the following Yang-Baxterization condition

$$
\begin{equation*}
\left[\check{R}, K_{1}^{2}+A K_{1}\right]=0 \tag{5}
\end{equation*}
$$

where A is a central element of reflection algebra (which is an associative algebra generated by the non-commuting elements $k_{i j}$ of the reflection matrix K [7]), then the reflection matrix can be Yang-Baxterized as

$$
\begin{equation*}
K(\lambda)=\left(\lambda-\lambda^{-1}\right) K+A \lambda I \tag{6}
\end{equation*}
$$

We do not need the fact that K is invertical and the quantum determinant of reflection algebras is the central element. In the following we shall see that for the $s u(1,1)_{q}$ model there exists an element which is not the central element of \mathcal{A}_{q} but plays the role of the quantum determinant of the $s l(2)_{q}$ model, such that the condition (5) is satisfied, and then the algebraic solutions is Yang-Baxterized.

The presentation here is an addendum and correction of arguments in [1].
The R-matrix for the $s u(1,1)_{q}$ model is

$$
\check{R}=\left(\begin{array}{llll}
q & & & \tag{7}\\
& 0 & 1 & \\
& 1 & \omega & \\
& & & -q^{-1}
\end{array}\right) \quad \omega=q-q^{-1}
$$

Letting

$$
K=\left(\begin{array}{ll}
z & y \tag{8}\\
x & u
\end{array}\right)
$$

and substituting \breve{R}, K into (3) we obtain the algebraic relations of the reflection algebra \mathcal{A}_{q} of the $s u(1,1)_{q}$ model:

$$
\begin{array}{lc}
u x=q^{2} x u \quad[u, z]=0 \quad[x, z]=-q^{-1} \omega u x \\
u y=q^{-2} y u \quad q x y+q^{-1} y x=\omega\left(u z-u^{2}\right) \quad[y, z]=q^{-1} \omega y u \\
\left(q+q^{-1}\right) x^{2}=\left(q+q^{-1}\right) y^{2}=0 . \tag{10}
\end{array}
$$

The case $q^{2}=-1$ has been considered in paper [1]. In the following we only consider the case $q^{2} \neq-1$. In this case equation (10) becomes

$$
\begin{equation*}
x^{2}=y^{2}=0 \tag{11}
\end{equation*}
$$

It is well known that the element $u-z$ is a central element. The quantum determinant of the K-matrix, however, is not the central element. We shall prove that there is an element which is not the central element and plays the role of quantum determinant.

According to Kulish and Sasaki [8], the reflection algebras associated with RE (3) have the following form of the central elements

$$
\begin{equation*}
C_{n}=\operatorname{Tr}\left(\mathcal{D} K^{n}\right) \tag{12}
\end{equation*}
$$

where the matrix \mathcal{D} is defined as

$$
\begin{equation*}
\mathcal{D}=\operatorname{Tr}_{2}\left[P\left(\left(R^{t_{1}}\right)^{-1}\right)^{t_{1}}\right] \tag{13}
\end{equation*}
$$

and Tr_{2} denotes taking the trace in the second space.

For the case in hand, it is easy to calculate the matrix \mathcal{D} :

$$
\mathcal{D}=\left(\begin{array}{ll}
1 & \tag{14}\\
& -1
\end{array}\right)
$$

Then from (12) we can obtain a class of central elements of \mathcal{A}_{q}. The first-order central element is the well known

$$
\begin{equation*}
C_{1}=u-z \tag{15}
\end{equation*}
$$

The second-order central element is obtained as

$$
\begin{equation*}
C_{2}=u^{2}-z^{2}+[x, y] \tag{16}
\end{equation*}
$$

Then, by direct verification using equations (9) and (11), we can prove the following:
Proposition 1. The central elements C_{1} and C_{2} of \mathcal{A}_{q} satisfy the following quadratic relation

$$
\begin{equation*}
C_{1} K^{2}-C_{2} K=[-z u(u-z)-z x y+y x u] I \tag{17}
\end{equation*}
$$

where I is the identity matrix.
We would like to note that the element $-z u(u-z)-z x y+y x u$ in equation (17) is not the central element of \mathcal{A}_{q}. So we cannot define the inverse K^{-1} of K from (17). In comparison with the $s l(2)_{q}$ model, $C_{1}^{-1}[-z u(u-z)-z x y+y x u]$ plays the role of quantum determinant and is not the central element. However, equation (17) is essentially the YangBaxterization condition, so it plays a key role in the Yang-Baxterization of the algebraic K-matrix.

Since the \breve{R}-matrix for the $s u(1,1)_{q}$ model has two distinct eigenvalues q and $-q^{-1}$, the \breve{R} can be Yang-Baxterized as

$$
\begin{equation*}
\check{R}(\lambda)=\left(\lambda-\lambda^{-1}\right) \check{R}-\omega \lambda I . \tag{18}
\end{equation*}
$$

If we can prove that condition (5) is satisfied, then we can Yang-Baxterize the K-matrix from equation (6). In fact, condition (5) can also be modified as

$$
\begin{equation*}
\left[\check{R}, C_{1} K_{1}^{2}+B K_{1}\right]=0 \tag{19}
\end{equation*}
$$

where $B=C_{1} A$ is also a central element. If we choose $B=-C_{2}$ then we have

$$
\begin{equation*}
\left[\check{R}, C_{1} K_{1}^{2}-C_{2} K_{1}\right]=(-z u(u-z)-z x y+y x u)[\check{R}, I]=0 \tag{20}
\end{equation*}
$$

Therefore the $K(\lambda)$-matrix of $s u(1,1)_{q}$ model is obtained as

$$
\begin{equation*}
K(\lambda)=\left(\lambda-\lambda^{-1}\right) K-C_{1}^{-1} C_{2} \lambda I . \tag{21}
\end{equation*}
$$

Regarding x, y, z, u as the complex number, we obtain the constant solutions. Besides the identity matrix solution, there exists a non-trivial constant solution: $x=y=u=0, z$ free. Therefore the central elements take the values

$$
\begin{equation*}
C_{1}=-z \quad C_{2}=-z^{2} \tag{22}
\end{equation*}
$$

and equation (21) reduces to

$$
\begin{equation*}
K(\lambda)=\left(\lambda-\lambda^{-1}\right) K-z \lambda I \tag{23}
\end{equation*}
$$

which is same as the result in [1].

Acknowledgments

This work is supported in part by the National Natural Science Foundation of China through the Northeast Normal University.

References

[1] Fu H-C, Ge M-L and Xue K 1993 J. Phys. A: Math. Gen. 26847
[2] Cherednik I 1984 Theor. Math. Phys. 6155
[3] Reshetikhin N and Semenov-Tian-Shansky M 1990 Lett. Math. Phys. 1913
[4] Sklyanin E 1988 J. Phys. A: Math. Gen. 212375
[5] Kulish P and Sklyanin E 1991 J. Phys. A: Math. Gen. 24 L435
[6] Ge M-L, Wu Y-S and Xue K 1991 Imt. J. Mod. Phys. A 63735
[7] Kulish P and Sklyanin E 1992 J. Phys. A: Math. Gen. 255963
[8] Kulish P and Sasaki R 1993 Prog. Theor. Phys. 89741

