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Abstract. A quadratic relation between the central elements of reflection algebra for su(l, i),
model is obtained. Yang-Baxterization of algebraic solutions to reflection equation for su(l, )4
model is presented in terms of this relation,

In a previous paper [1], we studied the Yang-Baxterization of the reflection equation (RE)
RE\RK> = KhRK\R {1

where Ky = K® I, K2 = I® K, R = PRP, and P is the permutation operator
P(x ® ¥y) = y ® x; namely, we presented a procedure to incorporate the parameters to
R and X such that they satisfy the following parameter-dependent RE

RALTIKI(MRAL)K2(1) = Ba(u)ROWEK (D RG ™) )

for R = PR with two distinct eigenvalues. This is of significance in the factorized scattering
on a half-line [2], in the quantum current algebras [3] and in the integrable models with non-
periodic boundary conditions [4, 5]. In particular, we presented the Yang-Baxterization of
constant solutions of RE for the su(l, 1), model. However, we failed in Yang—Baxterizing
its algebraic solutions because the quantum determinant is not the central element. In this
addendum, we are devoted to the Yang—Baxterization of its algebraic solution.

For convenience, we rewrite RE (1) and (2) as

RE\RK) = K \RK1 R (3)
ROu™ DK (DRGWE () = Ki (W) ROWK (MRAL™) (4)

in terms of R = PR. Here PK,P = K ivs used,
In fact, in [1] we prove that if (i) R has two distinct eigenvalues #, and #; which,
therefore, can be Yang-Baxterized as [0]

R = (=2 DR = + Al
and (i) the reflection matrix K satisfies the following Yang—Baxterization condition

[R,K}+ AK]=0 (5)
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where A is a central element of reflection algebra (which is an associative algebra generated
by the non-commuting elements &;; of the reflection matrix X [7]), then the reflection matrix
can be Yang-Baxterized as

K(\) = (A= A"DK + ALL (6)

We do not need the fact that K is invertical and the quantum determinant of reflection
algebras is the central element. In the following we shall see that for the su(l, 1), model
there exists an element which is not the central element of .4, but plays the role of the
quantum determinant of the s{(2), model, such that the condition (5) is satisfied, and then
the algebraic solutions is Yang-Baxterized.

The presentation here is an addendum and correction of arguments in [1].

The R-matrix for the su(l, 1); model is

q

Ric
]

0o 1 ]
U w=g-q". )
—-q

(% 7
K= (JC u) (8)
and substituting R, K into (3) we obtain the algebraic relations of the reflection algebra A,
of the su(l, 1), modek:

Letting

ux = q’xu [#.2] =0 ix,7] = —¢ 'wux
uy = q yu gxy + 9" yx = o(uz — u?) .2)=qloyn (9
(@+qg P =(g+g ")y =0 (10)

The case g2 = —1 has been considered in paper [1]. In the following we only consider the
case g% # —1. In this case equation (10) becomes

x2=yt=0, (11)

It is well known that the element u — z is a central element. The quantum determinant of
the K-matrix, however, is not the central element. We shall prove that there is an element
which is not the central element and plays the role of quantum determinant.

According to Kulish and Sasaki [8], the reflection algebras associated with RE (3) have
the following form of the central elements

C, = Tr(DK™ (12)
where the matrix D is defined as
D = Tro[ P((R")™'Y] (13)

and Trp denotes taking the trace in the second space.
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For the case in hand, it is easy to calculate the matrix D:

D:(l _1). (14)

Then from (12) we can obtain a class of central elements of .A,. The first-order central
element is the well known

C=u—2z (15)
The second-order central element is obtained as

Cy=u?— 22 +[x, 3] (16)
Then, by direct verification using equations (9) and (11), we can prove the following:

Proposition 1. The central elements C; and C; of A, satisfy the following quadratic
relation

CiK? — CaK =[—zu{u — 2) — zxy + yxull (17
where 7 is the identity matrix.

We would like to note that the element —zu(u — z) — zxy + yxu in equation (17) is
not the central element of .4,. So we cannot define the inverse X! of X from (17). In
comparison with the sI(2), model, C fli—zu(u —z) — zxy -+ yxu] plays the role of guantum
determinant and is not the central element. However, equation (17) is essentially the Yang~
Baxterization condition, so it plays a key role in the Yang-Baxterization of the algebraic
K -matrix. .

Since the R-matrix for the su(l, 1), model has two distinct eigenvalues ¢ and —g~!,
the R can be Yang-Baxterized as

RO = — A YR —wrl (18)

If we can prove that condition (5) is satisfied, then we can Yang—Baxterize the K-matrix
from equation (6). In fact, condition (5} can also be modified as

[R,C;K? 4 BK)]1=0 (19)
where B = | A is also a central element. If we choose B = —C; then we have

[R, C\K2 —~ C2Ky) = (—zulu — 2) — zxy + yxu)[R, 11 = 0. (20)
Therefore the K (A)-matrix of su(1, I); model is obtained as

KW) =G —2"NK —C7Col. (21)

Regarding x, y, z, # as the complex number, we obtain the constant solutions. Besides
the identity matrix solution, there exists a ncn-trivial constant solution: x = y=u =0, z
free. Therefore the central elements take the values

C=—z Cy = -7* (22)
and equation (21) reduces to
KW =G —-2NK —zI (23)

which is same as the result in [1].
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